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Identification of Lifting Rotor System

Parameters From Transient Response Data

K. H. Hohenemser and D. A. Prelewicz

Washington University, St. Louis, Missouri

Abstract

System identification methods have recently been applied to

rotorcraft to estimate stability derivatives from transient

flight control response data. While these applications as-

sumed a linear constant coefficient representation of the

rotorcraft, the computer experiments described in this paper

used transient responses in flap-bending and torsion of a

rotor blade at high advance ratio which is a rapidly time

varying periodic system. It was found that a simple system

identification method applying a linear sequential estimator

also called least square estimator or equation of motion es-

timator, is suitable for this periodic system and can be used

directly if only the acceleration data are noise polluted.

In the case of noise being present also in the state variable

data the direct application of the estimator gave poor results,

however after prefiltering the data with a digital Graham
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filter having a cut-off frequency above the natural blade tor-

sion frequency, the linear sequential estimator successfully

recovered the parameters of the periodic coefficient analytical

model. The noise corruption was achieved by adding computer

generated white Gaussian noise to the analytically obtained

response data. The transients were obtained from step inflow

changes which are equivalent to step rotor angle of attack

changes. Such step inputs could be used in wind tunnel testing

of rotor models in an effort to approximate dynamic inflow

effects by applying modifications to the parameters of an

analytical model originally established without these effects.
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Nomenclature

B Blade tip loss factor

F = (I1/16If) (c/R)
2 first blade torsional inertia number

F(x,t) state matrix

G(t) process noise modulating matrix

H(w) Fourier transform of weighting function

H(x,t) measurement matrix

H(E,a) state matrix = measurement matrix

Ii blade flapping moment of inertia

If blade feathering moment of inertia

J quadratic cost function

p covariance matrix of conditional state

vector probability distribution given
measurements.

p blade flapping natural frequency

Q process noise covariance matrix

Q = (I1/41f)c/R second blade torsional inertia number

R measurement noise covariance matrix

R blade radius

a, b, c unknown parameters to be estimated in

flapping-torsion problem

a parameter vector

c blade chord

c normalization constant for smoothing
weights

f blade torsional natural frequency

t non-dimensional time, such that time of
one rotor revolution = 2f.

w(jAt) smoothing weights
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w process noise vector

v measurement noise vector

x state vector

z measurement vector

e blade pitch angle

B flapping angle

y blade Lock number

6 blade torsion deflection

X rotor inflow ratio, constant over disk

Srotor advance ratio

w circular frequency

a standard deviation

displacement vector

In rate of displacement vector

C acceleration vector

Subscripts

o initial or mean value

c,t beginning and end of filter cut-off
frequencies.

Superscripts

* time differentiation

smoothed data after filtering

estimate

T matrix transpose
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Introduction

The question often arises, how to best 
select the param-

eters of a given analytical model of a dynamic 
system on the

basis of transient responses to certain inputs 
either obtain-

ed analytically with a more complete math model 
or obtained

experimentally. In rotor craft flight dynamics one may want

to use a linear six degree of freedom math model 
and select

the numerous derivatives in an optimum way from the 
measured

data obtained in a number of transient flight maneuvers. 
One

also may have a more sophisticated analytical model 
of the

rotor craft which includes non-linearities and which 
includes

in addition to the six body degrees of freedom also 
a

certain number of rotor degrees of freedoms. The problem

then is how can the simpler linear six degree of freedom

math model be selected to best represent the responses of the

more complete analytical model. Finally, as a last example,

one may have the dynamic equations of a rotor blade without

the effect of dynamic inflow and one desires to modify some

of the parameters in such a way that dynamic inflow effects

are best approximated. It is known from theoretical studies,

for example Reference 1, that a reduction in blade Lock num-

ber can approximately account for rotor inflow effects in

steady conditions. The question then is whether changes in

parameters can also account for inflow effects during tran-

sient conditions.

The idea of using transient response data to "modify"

an analytical model is certainly not new. Recently, however,
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considerable interest in this area has been developed and a

number of approaches have been studied which are unified

under the title of "system identification". There is a con-

siderable and rapidly growing literature in this field. Sys-

tem identification methods generally fall into two classes:

(1) deterministic methods - usually some variation of the

classical least squares technique and (2) probabilistic

methods which determine the parameters as maximum likelihood

estimates of random variables. Some methods can also be in-

terpreted either on a deterministic or on a probabilistic

basis. References 2 and 3 are typical of recent work using

deterministic methods. Both of these studies illustrate the

feasability of determining coefficients in time invariant

linear systems from transient response data. Reference 4 de-

scribes many of the probabilistic techniques. Reference 5

gives a detailed discussion of the various methods in their

application to V/STOL aircraft and Reference 6 presents an

identification method suitable for obtaining stability deriva-

tives for a helicopter from flight test data in transient ma-

neuvers. The studies of References 5 and 6 assume a linear

constant coefficient representation of the system. A rotor craft

blade is, however, a dynamic system with rapidly changing period-

ic coefficients. It appeared, therefore, desirable to try out

methods of system identification for a periodic dynamic system.

If one assumes that only the state variables have been measured

but not the accelerations, one must use a non-linear estimator

since the estimate of a system parameter and the estimate
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of a state variable appear as a product of two unknowns. A non-

linear sequential estimator was tried on the simplest linear

periodic system described by the Mathieu Equation. It was

found that the non-linear estimating process diverged in most

cases, unless the initial estimate and its standard deviation

were selected within rather narrow limits. Reference 6 uses

a sequential non-linear estimator but initializes the process

by first applying a linear or equation of motion estimator,

which needs in addition to the state variable measurements

also measurements of the accelerations. In the case of the

problem of Reference 6 the linear estimation yielded a rather

good set of derivatives and the improvement from the much

more involved non-linear estimation was not very pronounced.

From this experience it would appear that one needs to apply

the linear estimator any way and that it is somewhat doubtful

whether or not the subsequent application of a non-linear

estimator is worth the considerable effort. After conducting

the rather unsatisfactory computer experiments to identify a

simple periodic system with the non-linear estimator, all

subsequent work was done with a linear sequential estimator

and with a rotor blade flexible in flap bending and in tor-

sion operating at an advance ratio of 1.6. For the coupled

flapping-torsion dynamics at high advance ratio the equations

of Reference 7 were used which assume a straight blade elasti-

cally hinged of the rotor center. The coefficients in the

equations are non-analytic periodic functions since reversed
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flow is important at this advance ratio. Though Reference 8

showed that at 1.6 advance ratio the straight blade assump-

tion can lead to appreciable errors, the computer experiments

conducted with the system of Reference 7 have general signifi-

cance for these types of problems. The identification algo-

rithm used in this report is easily derived using the extended

Kalman filter discussed in the next section. Although the

linear sequential estimator as derived from the Kalman filter

equations does not provide for noise in the state variables,

one can nevertheless use it also for noisy data if one inter-

prets the estimate, which normally is a deterministic vari-

able, as a sample of a random variable.

Extended Kalman Filter

The extended Kalman filter is an algorithm for obtaining

an estimate R of a state vector x satisfying

x = F(x,t) + G(t)w Process Equation (1)

given noisy measurements z related to x via

z = H(x,t) + v Measurement Equation (2)

In the above equations w represents zero mean white Gaussian

process noise with covariance matrix Q, v represents zero

mean white Gaussian measurement noise with covariance matrix

R. An optimum estimate R of x can be obtained by solving the

extended Kalman filter equations (see Reference 9)

x = F(,t) + P ! TR z - H(,t)) Filter Equation (3)

(F T T (H)TR
ax + + GQGx Covariance(4)

Equation
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x(o) = x , P(o) = P0  Initial Conditions (5)

8 and P can be interpreted as vector mean and covariance matrix

of a conditional probability distribution of the state vector

x, given the measurement vector z.

However, since the extended Kalman filter is a biased

estimator (see Reference 5) and since the correct value

of Po is not known, P cannot be used as a measure of the

quality of the estimate. Rather, the rate of decrease of P

is an indication of the amount of information being obtained

from the data. When P approaches a constant value then no

further information is being obtained.

The extended Kalman filter may also be interpretted as

an algorithm for obtaining a least square estimate recursive-

ly. The estimate is such as to minimize the following least

squares cost function

t

J = w +wT Q w + (z-H(x,t)yR (z-H(x,t)dt

Cost Function (6)

where now P , R and Q are arbitrary weighting matrices, which

may be selected for good convergence of the algorithm. Since

1.) numerical methods for solving ordinary differential equa-

tions are well developed and 2.) R is usually a diagonal
-i

matrix so that R is easy to obtain, this algorithm is compu-

tationally very efficient.
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Estimation of Unknown Parameters

If we wish to estimate the vector a of unknown para-

meters we substitute a for x in the Kalman filter Eq. 3. For

constant parameters we have

A = o Process Equation (7)

so that F = Q = O. The system equation is then used as the

measurement equation

Measurement Equation =
S= H(S,a) + v System Equation (8)

is the vector of measured accelerations, E is the measured

state vector and v can be interpreted as acceleration measure-

ment noise or as system noise (including modeling errors).

The Kalman filter equations are then

S= Ya R - H(,) Filter Equation (9)

= -P H.TR-I R P Covariance Equation (10)
3a 8a

For P + o the measurements lose influence on the estimate and

one obtains

a = o Asymptotic Filter Equation (11)

which agrees with the process equation. Again Po and R may be

selected for good convergence. A convenient choice for the

initial estimate is A(o) = o. The elements of R should be

large enough to prevent the elements of P from becoming nega-

tive due to computation errors in the numerical integration.

Note that 5, the state vector, is also a measured quan-

tity. If measurement errors are present then this estimation
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algorithm is biased by an amount approximately proportional

to the noise to signal ratio in the state variable measure-

ments, see Reference 5. It is therefore advantageous to re-

duce the noise ratio before using the estimator. Methods for

doing this are discussed in a later section on filtering of

the response data.

In practice, one can almost always choose the parameters

to be identified in such a way that H(F,a) is a linear func-

tion of a. The estimator (9), (10) is then linear and prob-

lems of nonuniqueness and filter divergence are easily avoid-

ed. For this case, we call the algorithm the linear sequen-

tial estimator.

The extended Kalman filter assumes that the noise proces-

ses w and v are white and Gaussian. This will never be the

case in practice especially if w must account for the effects

of modeling errors. Because the extended Kalman filter may

also be interpreted as yielding a least squares estimate for_

a given sample of the state 5 and acceleration g, we can re-

gard the resulting estimate as a sample from a random variable.

Determination of the statistics of this random variable would

necessitate a complete simulation, i.e., mean and variance de-

termined by averaging over many runs. Since this approach is

expensive of computing time, efforts here have been directed

toward recovering parameters from a single run of computer gen-

erated response data.

The above approach to parameter estimation allows the
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use of high order of accuracy numerical integration (i.e., pre-

dictor corrector) schemes to solve the system or ordinary dif-

ferential equations provided that the response data are suf-

ficiently smooth. The parameter estimation is rapid and

requires little computer time. R and Po can be freely select-

ed to obtain good convergence. The reason for this benign

behavior of the estimation method is the linearity of the

filter equations in the unknowns. If the accelerations of

the system are not measured, one must estimate state variables

and parameters simultaneously from a nonlinear filter equation.

This nonlinear estimation requires an order of magnitude more

computer effort and it is very sensitive to the initializa-

tions and to the correct assumptions of process noise and mea-

surement noise. As mentioned before, we began by applying the

non-linear estimator to the identification of parameters in

Mathieu's equation for a periodic system. The results were

unsatisfactory since filter divergence occured for many choic-

es of Po and R. However, for the linear sequential estimator

divergence could be avoided by following simple rules in

selecting 2(o), Po and R.

Identifiability of System Parameters

It is obvious from the filter equation (9) that a will

asymptotically approach a constant value provided that P ) o.

The covariance equation (10) can be solved explicitly (see

Appendix A) to yield



-9-

p p 3H - 3HP [ P1 oa R 51 dtj (12)

If the integral is replaced by a sum, this is the error equa-

tion for the standard least square method. If Po o, then

P(t) ) o whenever the integrand in the above equation is posi-

tive definite for all t. This is then a sufficient condition

for identifiability. Note that 2 is a function of the system

response and hence also of the excitation, so that the identi-

fiability depends not only upon the system but also upon the

type of excitation. From the measurement equation (8) we see

aHthat the matrix -a is a measure of the sensitivity of acceler-

ation measurements to changes in the parameters.

For estimating parameters, a well designed excitation is ob-

viously one which causes the elements of the P matrix to de-

crease rapidly. If any elements of P are decreasing slowly or

not at all, then a different type of excitation is needed. A

look at which elements of P are causing the trouble will give

a clue as to which modes of the system are not being properly

excited.

Filtering the Response Data

In practice, we usually have some knowledge of the char-

acter of the response data. For example, because of the damp-

ing present in physical systems, the true response will not

contain much energy at high frequencies. We also know that

the acceleration is the derivative of the velocity which is in

turn the derivative of the displacement, etc. so that these
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responses are not independent.

To remove high frequency noise without effecting the

signal a zero phase shift low band pass digital filter was

used. This filter completely removes all of the signal and

noise above a certain termination frequency wt without phase

or amplitude distortion below a cutoff frequency w . The

digital filter used, due to Graham, Reference 10, generates

the smoothed data as a numerical convolution of the raw data

and a set of numerical smoothing weights, i.e.,

f(t 0 + iAt) = w(jAt)f(t 0 + (i + j)At) (13)

j=-N

where f(to + (i + j)At) are the sampled values of the signal,

f(to + iAt) are the smoothed sampled values and w are the

smoothing weights given by

wI sin wtjAt + sin wc jAt j = -N,...,+ N
w(jAt) =

2jAt 2 - (wt-wC ) 2 2j 2 A t 2  j o

c(wt + wc )
w(o) = w < w (14)

2 rr

where the constant c is chosen to satisfy the constraint

+N

Ew(jAt) = 1 (15)

j=-N

The continuous weighting function w(t), of which w(jAt)

is a discretization, has the Fourier transform, i.e., frequency

domain representation, shown in Figure 1. Convolution of this
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function with an arbitrary signal will obviously result in a

smoothed signal which has all frequencies above wt completely

suppressed and all signal components below w undistorted.

If wc and wt are properly selected then response data with

low frequency signal and high frequency noise can be improved.

via digital filtering, that is, signal to noise ratio can be

significantly increased.

In using the digital filter, it is tempting to achieve a

"sharp" filter by taking wc2Wt. Graham, Reference 10, has

determined empirically that the number of points N needed to

achieve a given accuracy is approximately inversely propor-

tional to Iwt-wcI at least over a limited frequency range.

Since N = 40 points were used to filter the data, we selected

Iwt-Wcj 1 which according to Graham is sufficient to yield

2% accuracy.

In this study, the numerical convolution was accomplish-

ed by using a moving average, i.e., f(t + itt) was computed

separately for each i using Eq. (13). For long data records

it is apparently possible to achieve considerable savings in

computer time by using the Fast Fourier transform algorithm

to do this convolution, see Reference 11.

Further improvements in the response date can be obtain-

ed by making use of relationships among the various response

signals. For the coupled flapping-torsion system considered

in the next section the displacements 5, velocities n and

accelerations are related by
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(16)
n = C + w

We can use these equations as process equations in a Kalman

filter along with measurement equations

T) [I [V21 (17)

where T and n denote smoothed measured values. In the process

equation (16) replace C by its smoothed measured value 5 and

let Q, the process noise covariance matrix account for remain-

ing errors. Then the Kalman Filter is given by

i-
=^ + PR (18)

Note that n is available when solving the above equations and

can be used as an improved estimate of r. Although this tech-

nique has not been used in this study, a similar procedure has

been used successfully by Molusis, in Reference 6.

Computer Experiments

Coupled flapping-torsion vibrations of a rotor blade at

high advance ratio are governed by the equations

S+ p2 = [ML (t)6 + M (t)A + M9 (t) 0 - C(t) - K(t)B
2 e2 >1 O 60

+ f6- 3yFC (t) + C (t)] (20)

- 3YQ [A (t) + lk(t) + r (t) X + kr0 (t)Q + K6 (t) ]
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where the periodic coefficients 
are defined in Reference 7.

Responses to the gust excitations 
shown in Figure 2 were gen-

erated by solving Eq. (20) numerically using a fourth order

Adams Moulton method with a time 
step of .05 and the follow-

ing parameter values:

p2 = 1.69 Y = 4.0 Q = 15.

f2 = 64. y = 1.6 6 = 0. (21)

B = .97 F .24

Simulated noisy measurements were obtained 
by adding samples

from zero mean computer generated 
Gaussian random sequences

to the computer generated responses. 
First the noise was

added only to accelerations using 
the standard deviations

P = 1.0 P = 10 (22)

The following three parameters with 
the values

a = y/2 = 2.0

b = -3yF = -2.88 (23)

c = -3yQ = -180

were assumed to be unknown.

They represent blade flapping and torsional 
inertia num-

bers. Unsteady aerodynamic inflow effects may possibly be

considered by modifications of these inertia 
numbers from

transient rotor model wind tunnel tests. The linear sequen-

tial estimator was started with the initial values 
of-the

estimates and errors of the estimatesa(0) 40 0 0
b(o) = o P(o) = 55 0 (24)

e () 0 0 4000
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The assumed initial standard deviations are much larger than

the true values of the parameters. The linear sequential es-

timator is, as mentioned before, quite insensitive to the

initial standard deviations which could have been selected

still much larger. The values for R used are the following

R = 0 10 (25)

The method allows wide variations in the assumptions of the

noise covariance matrix R. The integration scheme for solv-

ing filter and covariance Eqs. (9) and (10) was again a 4th

order Adams Moulton method with a time step of .05. Fig. 3,

shows the estimates a, b, 8 normalized with the true values

and the 3 diagonal terms of the error covariance matrix P

normalized with the initial values vs. non-dimensional time t.

The excitation for this case was a unit step gust at time

t = o, as indicated in Fig. 2 by the dash line. In about one

revolution (t = 2r) the diagonal components of the covariance

matrix Pa Pb P are approximately zero and further im-

provements of the parameter estimates a b 8 are not obtained.

There is a small bias error (deviation from the value 1) in

two of the parameters, which have been recovered within about

5% error.

The next case assumes that not only the accelerations

but also the state variables are noisy. The following stand-

ard deviations were used

P =  .2 P = .5

P = .6 P = 3.0 (22a)

P-= 1.0 P = 10
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The linear sequential estimator was first applied to the raw

data. In this case the responses are far from smooth so that

the use of a high order numerical integration scheme was un-

justified. A first order Euler's method was used for the

integration of the estimator equations. The initial values

were

a(o) 130 0 0

S(o) 0 0 1000

The values for the R used in the estimator were

R = (25a)
0 225

The excitation consisted of a upward unit step gust at t = 2.0

followed by a down step gust to X = -1 at t = 6.0, as indicat-

ed in Fig. 2. The second gust was added in order to provide

to the system another transient useful for the estimator pro-

cess. Fig. 4 shows that though two of the diagonal covariance

terms go to zero after the second gust, the associated para-

meter estimates remain quite erroneous. The linear sequential

estimator cannot be used if noise is present in accelerations

as well as in the state variables.

Next the same data were passed through a digital filter

with cut-off frequencies wc = 12, wt = 13, see Fig. 1. These

cut-off frequencies are about 50% higher than the torsional

frequency of f = 8. Applying now the linear sequential estima-

tor to the filtered data, the initial values were the same as

before, Eq. (24a), however R was reduced:
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R = (25b)

0 9

The results of the estimation are shown in Fig. 5. All dia-

gonal terms of the covariance matrix go to zero soon after

the second gust, the estimates stabilize in less than 2 rotor

revolutions and have only a small bias error of about 5%;

same as for the case with zero noise in the state variables.

Digitally filtering the data to remove high frequency noise

has thus appreciably extended the range of applicability of

the linear sequential estimator. It might be argued that the

success of the digital filter is due to the "white" character

of the computer generated noise whereas real data will contain

energy only at finite frequencies. It should be noted that

the digital filter removes all of the signal above the trun-

cation frequency and hence would be equally successful for

any other distribution of the energy above wt .

In selecting the parameters for the digital filter it is

important to keep wc large enough so that the responses are

not significantly distorted. Initially, the noisy data was

processed using different digital filters for the torsion and

flapping responses. A digital filter with high cutoff fre-

quency i.e., wc=12 . and wt=1 3 . was used for torsion responses

while a lower bandpass filter with wc=2 . and wt= 3 . was used

to filter flapping responses. This resulted in poor identifi-

cation of the parameter a in the flapping equation. When the

same filter with high cutoff frequency was used for all of the
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data, adequate identification of all parameters was obtained.

Although wc=2 . is above the natural frequency of flapping vi-

bration, the flapping response obviously contains higher fre-

quency components because of the coupling with torsion. This

can easily be seen by inspection of the flapping response in

Figure 6. For a good identification it is necessary that

these higher frequency components not be removed from the sig-

nal. Fig. 6 compares the response without noise to the re-

sponse with noise but after filtering. Also indicated are the

standard deviations for flapping and torsion before filtering.

It is seen that the filter was very effective in removing the

noise corruption from the data.

Conclusions

1. The linear sequential estimator, also called least square

or equation of motion estimator, has been successfully

applied to recover the system parameters of a periodic

system representing rotor blade flapping-torsion dynamics

at high rotor advance ratio with noise contaminated

accelerations. Filtering of the noisy acceleration data

was found to be not necessary.

2. If noise is present in the state variables as well as in

the accelerations, the linear sequential estimator per-

formed very poorly.

3. Filtering both state variables and accelerations with a

Graham digital filter with a low cut-off frequency for

flapping and a high cut-off for torsion before estimation
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lead to a poor estimate for the flapping parameter.

4. Filtering both flapping and torsion response with a high

cut-off frequency digital filter before estimation result-

ed in an adequate parameter recovery both in flapping and

in torsion.

5. As compared to non-linear estimation methods which are

applicable also if acceleration information is not avail-

able, the linear sequential estimator has the great ad-

vantage of being insentitive to the assumption of initial

values for the estimate and for the error of the estimate.

No matter what the actual measurement noise is, the assumed

noise covariance matrix should be over-rather than under-

estimated.

6. As compared to the usual form of the least square estima-

tion the linear sequential estimator does not require the

inversion of large matrixes at each time step but merely

the numerical solution of a system of ordinary differential

equations. The digital filter smoothes the data suffi-

ciently so that high order of accuracy predictor corrector

methods can be used for the integration.

7. When applying the methods studied here with the help of

computer experiments to windtunnel transient testing one

needs not only the blade deflections but also the rates

and accelerations. Further one must separate the trans-

ient response from the trim response. Provided these

problems are solved the linear sequential estimator could
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become of value in correlating analytical models of rotor

blade dynamics with results from transient wind tunnel

testing.
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Figure Captions

Fig. 1. Fourier Transform of Weighting Function.

Fig. 2. Gust Excitations.

Fig. 3. Estimates & Covariances vs. Time, Acceleration Noise

Only.

Fig. 4. Estimates & Covariances vs. Time, Acceleration and

State Variable Noise.

Fig. 5. Estimates & Covariances vs. Time, Filtered Data.

Fig. 6. Exact Responses and Noisy Responses after Filtering.



-23-

H

-wc We WT

FIG - 1

1.0 -- --

0 2 4 6 10 12

-1.0

FIG - 2



-23-

H

-W, -WW

FIG - 1

1.0- -- - --- -

I t
2 4 6 8 10 12

-1.0

FIG - 2



-24-

abc
102

a A

.8

.4 C

O t
0 5 10 15

FIG - 3



-25-

abc
1.0

.5

0-

-1o t

.5

0 4 8 12

FIG4 8 12

FIG - 4



-26-

ab6

.5

1.0

o 4 8 12

FIG - 5



-27-

Exact

Filtered Noise

0

-2 t
0 4 8 12

FIG - 6

6 A

4

2- -

-2

-4 48 12



-28-

Appendix A

Solution of the Covariance Equation

The covariance equation of thelinear sequential estimator

= - R1 ~H P (A-l)
3a 3a

is a matrix Ricatti differential equation. It is well known

that the general matrix Ricatti Equation with all matrices

being time functions

= -PA - DP - PBP + C (A-2)

of which (A-1) is a special case, has the solution

P = VU (A-3)

where U and V satisfy

= CU - DV
(A-4)

U = AU + BV

This and other aspects of matrix Ricatti equations are dis-

cussed in Reference 12.

By comparing Eqs. (A-l) and (A-2) we see that Eq. (A-l)

is of the form of Eq. (A-2) with A=C=D=O and B = a- -- "

Therefore, from Eq. (A-4) V=Vo , a constant matrix and

U = BV (A-5)

Integrating yields
t

U = U0 + B dtV0 (A-6)
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Now since from (A-3)

P =VU -1  A-(7)

we can satisfy the initial condition by taking V = I and

-1
U =P . Hence

o o t
-1

U = + fB dt A-(8)

and

P = P- + a) dt A- (9)

o


